Optimizing human activity patterns using global sensitivity analysis

نویسندگان

  • Geoffrey Fairchild
  • Kyle S. Hickmann
  • Susan M. Mniszewski
  • Sara Y. Del Valle
  • James M. Hyman
چکیده

Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influenza Global Scholarly Publications in the Mirror of the Co-Word Analysis Technique

Background and Objective: Influenza is a global epidemic disease that always causes irreparable damage to individuals and countrieschr('39') health, and the amount of research in this area is increasing. The primary purpose this study is to discover the hidden patterns and emerging events of global influenza publications. Materials and Methods: This article is an applied type was done with an ...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Coronavirus: Discover the Structure of Global Knowledge, Hidden Patterns & Emerging Events

Background & Objective:  The present study aimed at exploring the structure of global knowledge, hidden patterns, and emerging Coronavirus events using co-word techniques. Co-word analysis is one of the most efficient scientific methods to analyze the structure and dynamics of knowledge and the general state of research.  Materials & Methods:  This applied research performed using Co-word anal...

متن کامل

Learning alters the tuning of functional magnetic resonance imaging patterns for visual forms.

Learning is thought to facilitate the recognition of objects by optimizing the tuning of visual neurons to behaviorally relevant features. However, the learning mechanisms that shape neural selectivity for visual forms in the human brain remain essentially unknown. Here, we combine behavioral and functional magnetic resonance imaging (fMRI) measurements to test the mechanisms that mediate enhan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2014